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Abstract
Introducing asymmetry into the Weyl representation of operators leads
to a variety of phase-space representations and new symbols. Specific
generalizations of the Husimi and the Glauber–Sudarshan symbols are
explicitly derived.

PACS numbers: 42.50.−p, 42.25.Kb, 03.65.−w

1. Introduction

Phase-space representations have proven their value in classical mechanics and, ever since
the work of Wigner [1], in quantum mechanics as well. The map introduced by Wigner
from state functions to quasi-probability functions is notable for two fundamental properties.
The first reason it is notable relates to the fact that, in general, the Wigner quasi-probability
function is not nonnegative everywhere, and this keeps it from being a true probability function.
The second reason relates to the fact that the Wigner map is not unique, and this property
has led to a variety of alternative prescriptions to define a quantum mechanical phase-space
distribution. The most widely known variation on the Wigner map is that due to Cohen
[2]. Cohen’s generalization, which is typical of most such efforts, normally steps outside the
family of operator images by the Wigner map; in other words, generalizations are introduced
that involve an auxiliary phase-space function that is generally not obtained by means of an
operator map.

Two well-known phase-space representations for operators, however, are defined by direct
transcriptions of operators. In particular, we refer to the Husimi phase-space representation,
and its dual, the Glauber–Sudarshan phase-space representation, both of which are recalled
below. Both representations can be defined in an entirely abstract operator setting with the
only transcription between operators and phase space being given by an exclusive use of the

1751-8113/07/092093+13$30.00 © 2007 IOP Publishing Ltd Printed in the UK 2093

http://dx.doi.org/10.1088/1751-8113/40/9/015
mailto:klauder@phys.ufl.edu
mailto:boskag@phys.ntnu.no
http://stacks.iop.org/JPhysA/40/2093


2094 J R Klauder and B-S K Skagerstam

Weyl operator. The goal of the present paper is the generalization of such schemes leading to a
multitude of such dual pairs that are defined in a strictly operator fashion, and which, thereby,
transform covariantly under coordinate transformations.

While our discussion is presented in the notation and language of quantum mechanics,
a completely parallel discussion applies to a time-frequency analysis of signals and their
transformations; in this connection, see [3], section 4.5 and chapter 9.

1.1. Basics: Wigner, Weyl and Moyal

The basic phase-space representation of quantum states and operators is due to Wigner [1],
Weyl [4] and Moyal [5]. The basis of this representation involves the Heisenberg canonical
operator pair, P and Q, subject to the commutation rule [Q,P ] = i (with h̄ = 1 throughout),
expressed in their exponential form

U [p, q] ≡ ei(pQ−qP ), (1)

and known as the Weyl operator. As such, we assume the operators Q and P are both self-
adjoint, with continuous spectrum on the entire real line, and thus the operators U [p, q] are
unitary and (weakly) continuous in the real parameters (p, q) ∈ R

2. In terms of these operators
the commutation relation assumes the form

U [p, q]U [r, s] = ei(ps−qr)/2U [p + r, q + s]

= ei(ps−qr)U [r, s]U [p, q], (2)

which is the version we shall use. A key relation we shall employ is the distributional identity

Tr(U [p, q]U [r, s]†) = Tr(U [r, s]†U [p, q])

= 2πδ(p − r) δ(q − s), (3)

and it is appropriate that we reestablish this well-known expression. To that end, consider the
diagonal position space matrix elements

〈y|U [p, q]U [r, s]†|y〉 = 〈y| eipQ/2 e−iqP ei(p−r)Q/2 eisP e−irQ/2 |y〉
= ei(p−r)y/2〈y| e−iqP ei(p−r)Q/2 eisP |y〉
= ei(p−r)y/2〈y + q| ei(p−r)Q/2 |y + s〉
= ei(p−r)y/2 ei(p−r)(y+s)/2δ(q − s). (4)

Integration over y leads to

Tr(U [p, q]U [r, s]†) =
∫

ei(p−r)y ei(p−r)s/2δ(q − s) dy

= 2πδ(p − r)δ(q − s), (5)

as required. We make occasional use of this identity, which we call the basic identity.
The Weyl representation of operators (limited to Hilbert–Schmidt operators for the time

being) is given by

A =
∫

U [k, x]Ã[k, x]
dk dx

2π
, (6)

where Ã[k, x] is a function to be determined. If we consider Tr(U [k′, x ′]†A) and use the basic
identity equation (5), we learn that

Tr(U [k′, x ′]†A) =
∫

Tr(U [k′, x ′]†U [k, x])Ã[k, x]
dk dx

2π

= Ã[k′, x ′]. (7)



Generalized phase-space representation of operators 2095

Therefore, we have the important completeness relation

A =
∫

U [k, x] Tr (U [k, x]†A)
dk dx

2π
. (8)

We take a second operator with an analogous representation,

B =
∫

U [k, x] Tr (U [k, x]†B)
dk dx

2π
, (9)

and we again introduce the notation that

B̃[k, x] ≡ Tr (U [k, x]†B). (10)

Using the basic identity equation (5) again, we learn that

Tr(A†B) =
∫

Ã[k′, x ′]∗ Tr (U [k′, x ′]†U [k, x])B̃[k, x]
dk′ dx ′ dk dx

(2π)2

=
∫

Ã[k, x]∗B̃[k, x]
dk dx

2π
. (11)

In summary, the Weyl representation for operators is given by

A =
∫

U [k, x]Ã[k, x]
dk dx

2π
, (12)

where

Ã[k, x] ≡ Tr(U [k, x]†A). (13)

These relations are complemented by the expression

Tr(A†B) =
∫

Ã[k, x]∗B̃[k, x]
dk dx

2π
. (14)

It will also be important to introduce the Fourier transforms of the Weyl representation
elements as

A[p, q] ≡
∫

ei(kq−xp)Ã[k, x]
dk dx

2π
, (15)

and, correspondingly,

B[p, q] ≡
∫

ei(kq−xp)B̃[k, x]
dk dx

2π
. (16)

In terms of these representatives we have

Tr(A†B) =
∫

A[p, q]∗B[p, q]
dp dq

2π
, (17)

as follows from Parseval’s Theorem.
We note that A[p, q] and B[p, q] as introduced here are generally referred to as the Weyl

symbols for the operators A and B, respectively. Hence, Ã[k, x] and B̃[k, x] are the Fourier
transform of the corresponding Weyl symbols.

2. Initial introduction of asymmetry

It is clear from equations (11) and (17) that the Weyl representation has led to a symmetric
functional realization in how it treats the operators A and B. This is a natural representation
choice for applications in which A and B enter in a symmetric manner. However, there
are cases when that is not appropriate, and in such situations it can prove valuable to treat
the representations for A and B in an asymmetric manner. For example, it is well known
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that in quantum optics observables are commonly represented by normally ordered operators,
which are readily given a phase-space representation via the Husimi representation [6]. In
turn, the dual representation for this important example is known as the Glauber–Sudarshan
representation [7]. We begin our analysis of asymmetric representations with this important
conjugate pair.

To discuss these alternative representations it is convenient to first recall canonical coherent
states given by

|p, q〉 ≡ U [p, q]|0〉, (18)

where the fiducial vector |0〉 is the normalized ground state of a suitable harmonic oscillator,
or more simply that

(Q + iP)|0〉 = 0. (19)

From a notational point of view, it is also useful to recall that

|p, q〉 ≡ |z〉 = eza†−z∗a|0〉 = e−|z|2/2 eza†
e−z∗a|0〉

= e−|z|2/2 eza† |0〉 = e−|z|2/2
∞∑

n=0

zna† n

n!
|0〉

= e−|z|2/2
∞∑

n=0

zn

√
n!

|n〉. (20)

In this expression we have introduced z = (q + ip)/
√

2, a = (Q + iP)/
√

2, from which it
follows that [a, a†] = 1 and a|0〉 = 0, and finally the normalized states |n〉 ≡ a†n|0〉/√n!
for all n � 0. These are the familiar canonical coherent states; however, since we will
generalize expressions well beyond these particular states, we shall not focus on the complex
parametrization which is generally limited to this special family of coherent states.

Returning to the phase-space notation, the Husimi phase-space representation of B is
given by

BH [p, q] ≡ 〈p, q|B(P,Q) |p, q〉
= 〈0|B(P + p,Q + q)|0〉; (21)

and the operator representation given by

A ≡
∫

AG−S[p, q]|p, q〉 〈p, q|dp dq

2π
(22)

involves the Glauber–Sudarshan weight function AG−S[p, q] in a weighted integral over the
one-dimensional projection operators |p, q〉 〈p, q|. It is clear that the two symbols AG−S[p, q]
and BH [p, q] are related to their respective operators (i.e., A and B) in very different ways.
Nevertheless, one has the important relation

Tr(A†B) =
∫

AG−S[p, q]∗ Tr(|p, q〉 〈p, q|B)
dp dq

2π

=
∫

AG−S[p, q]∗BH [p, q]
dp dq

2π
, (23)

and it is in this sense that we refer to these two distinct representations as dual to one another.
Despite their very different appearances, there is a fairly close connection between the

initial, symmetric Weyl representations and the latter, asymmetric Husimi–Glauber–Sudarshan
representations. That relationship is most easily seen in the Fourier transforms of the given
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symbols. First, let us start from the symmetric Weyl expression (11) and modify that expression
in the following way:

Tr(A†B) =
∫ {

e(k2+x2)/4 Ã[k, x]
}∗ {

e−(k2+x2)/4 B̃[k, x]
}dk dx

2π

≡
∫

ÃG−S[k, x]∗B̃H [k, x]
dk dx

2π
. (24)

In (24) we have introduced

ÃG−S[k, x] = e(k2+x2)/4 Ã[k, x]

=
∫

ei(px−qk)AG−S[p, q]dp dq/2π, (25)

and

B̃H [k, x] = e−(k2+x2)/4 B̃[k, x]

=
∫

ei(px−qk)BH [p, q]dp dq/2π. (26)

This connection between the Weyl and the Husimi–Glauber–Sudarshan representations has
been known for some time (see, e.g., [8], p. 185), and we do not repeat a proof here; it will be
implicitly reestablished in what follows.

A direct connection also exists between the Husimi and the Glauber–Sudarshan
representations as well. In particular, we can transform equation (22) to read

AH [r, s] =
∫

AG−S[p, q] |〈p, q|r, s〉|2 dp dq

2π

=
∫

AG−S[p, q] e−[(r−p)2+(s−q)2]/2 dp dq

2π
. (27)

The functional form of this equation as a convolution reflects the connection through
multiplication in the Fourier space.

It is clear from the connections above that the Husimi symbol BH [p, q] is generally
‘smoother’ than the corresponding Weyl symbol B[p, q], while the Glauber–Sudarshan
symbol AG−S[p, q] is generally ‘rougher’ than the corresponding Weyl symbol A[p, q]. In
any asymmetric treatment of the representations this dichotomy is inevitable. In particular,
it is known (see [8], p 183) that for bounded operators, for example, the Glauber–Sudarshan
symbol AG−S[p, q] ∈ Z ′(R2), which is the Fourier transform of the more familiar space of
distributions in two dimensions, D′(R2). The use of suitable distributions for phase-space
symbols is perfectly acceptable provided that they are always paired with dual symbols that
lie in the appropriate test function space.

3. Generalized asymmetric phase space representations

We now come to the main topic of this paper, namely the introduction of a large class
of asymmetric phase-space representations. In so doing, we shall see how this analysis
incorporates and generalizes the familiar asymmetric example discussed in the previous
section.

Let us introduce a nonvanishing operator σ which we require to be a trace-class operator,
i.e., we require that 0 < Tr(

√
σ †σ) < ∞. Such operators have the generic form given by

σ =
∞∑
l=0

cl|bl〉 〈al |, (28)
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where {|al〉}∞l=0 and {|bl〉}∞l=0 denote two, possibly identical, complete orthonormal sets of
vectors, and the coefficients {cl}∞l=0 satisfy the condition

Tr(
√

σ †σ) =
∞∑
l=0

|cl| < ∞. (29)

If σ † = σ , we may choose |bl〉 = |al〉, and the coefficients cl as real for all l; however, it is
not required that σ be Hermitian.

We shall have need of the function Tr(U [k, x] σ) defined for all (k, x) in phase space.
Observe that because σ is trace class, this function is continuous. For now, we insist that the
expression

Tr(U [k, x]σ) 	= 0, (30)

for all (k, x) ∈ R
2; later, we briefly discuss a relaxation of this condition, but we will always

require that Tr(σ ) 	= 0. The operator σ will allow us to generalize the discussion of the
previous section. As an advance notice we point out that if we make the special choice that

σ = |0〉 〈0|, (31)

then the general discussion that follows refers to the case of the Husimi–Glauber–Sudarshan
dual pairs.

We begin again with the symmetric expression for Tr(A†B) given by (11) which we
modify so that

Tr(A†B) =
∫

Ã[k, x]∗

Tr(U [k, x] σ)
{Tr(U [k, x] σ)B̃[k, x]}dk dx

2π

=
∫ {

Ã[k, x]

Tr(U [k, x]†σ †)

}∗
{Tr(U [k, x] σ)B̃[k, x]}dk dx

2π

≡
∫

Ã−σ [k, x]∗B̃σ [k, x]
dk dx

2π

≡
∫

A−σ [p, q]∗Bσ [p, q]
dp dq

2π
. (32)

In the final line we have introduced the Fourier transform of the symbols in the line above. Our
task is to find alternative expressions involving the symbols A−σ [p, q] and Bσ [p, q] directly
in their own space of definition rather than implicitly through a Fourier transformation.

We begin first with the symbol Bσ [p, q]. In particular, we note that

Bσ [p, q] =
∫

ei(kq−xp) Tr(U [k, x] σ)B̃[k, x]
dk dx

2π

=
∫

Tr(U [p, q]†U [k, x]U [p, q] σ) Tr(U [k, x]†B)
dk dx

2π

=
∫

Tr(U [k, x]U [p, q] σU [p, q]†) Tr(U [k, x]†B)
dk dx

2π

= Tr(U [p, q] σU [p, q]†B), (33)

where in the middle line we have used the Weyl form of the commutation relations equation (2),
and in the last line we have used equation (5), which has led us to the desired expression for
Bσ [p, q]. This expression is the sought for generalization of the Husimi representation;
indeed, if σ = |0〉 〈0| it follows immediately that

Bσ [p, q] = Tr(U [p, q]|0〉 〈0|U [p, q]†B)

= 〈p, q|B |p, q〉 = BH [p, q]. (34)
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For general σ , to find the expression for A−σ [p, q] we appeal to the relation

Tr(A†B) =
∫

A−σ [p, q]∗Bσ [p, q]
dp dq

2π

=
∫

A−σ [p, q]∗ Tr(U [p, q] σU [p, q]†B)
dp dq

2π
, (35)

an equation which, thanks to its validity for all B of the form B = |φ〉 〈ψ | for arbitrary |φ〉
and |ψ〉 in the Hilbert space, carries the important implication that

A† ≡
∫

A−σ [p, q]∗U [p, q] σU [p, q]†
dp dq

2π
, (36)

or if we take the Hermitian adjoint that

A ≡
∫

A−σ [p, q]U [p, q] σ †U [p, q]†
dp dq

2π
. (37)

Observe that this equation implies a very general operator representation as a linear
superposition of basic operators given by U [p, q] σ †U [p, q]†, for a general choice of σ

that satisfies the conditions given initially.
Equation (37) for A is the sought for generalization of the Glauber–Sudarshan

representation; indeed, if σ = |0〉 〈0|, it follows immediately that

A =
∫

A−σ [p, q]U [p, q]|0〉 〈0|U [p, q]†
dp dq

2π

=
∫

A−σ [p, q]|p, q〉 〈p, q|dp dq

2π
(38)

=
∫

AG−S[p, q]|p, q〉 〈p, q|dp dq

2π
. (39)

Once again there is a direct connection between the generalization of the Husimi
representation, Aσ [p, q], and the generalization of the Glauber–Sudarshan representation,
A−σ [p, q]. In particular, it follows from (37) that

Aσ [r, s] =
∫

A−σ [p, q] Tr (U [r, s] σU [r, s]†U [p, q] σ †U [p, q]†)
dp dq

2π

=
∫

A−σ [p, q] [Tr(U [r − p, q − s] σU [r − p, q − s]†σ †)
dp dq

2π
. (40)

Again, this equation is a convolution, which just reflects the multiplicative connection between
these two symbols in the Fourier space. Note that the convolution kernel in (40) is generally
complex unless σ † = σ ; cf, equation (27).

4. Examples of generalized phase space operator representations

In this section we offer a sample of the generalization offered by our formalism. In particular,
let us choose a thermal density matrix

σ = Z e−βN , (41)

where β > 0, N = a†a is the number operator, with spectrum {0, 1, 2, 3, . . .}, and Z = 1−e−β

normalizes σ so that Tr(σ ) = 1. Observe that if we take a limit in which β → ∞, then
σ → |0〉 〈0| appropriate to the standard case. For convenience, we label this example simply
by the parameter β.
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It follows first that

Tr(U [k, x] σ) = Z Tr(U [k, x] e−βN) = e−θ(k2+x2)/4, (42)

where

θ ≡ 1 + e−β

1 − e−β
. (43)

Clearly, θ > 1, and θ → 1 as β → ∞. Furthermore,

Bβ[p, q] = Z Tr(U [p, q] e−βN U [p, q]†B)

= (1 − e−β)

∞∑
n=0

e−βn〈n|U [p, q]†B(P,Q)U [p, q] |n〉

= (1 − e−β)

∞∑
n=0

e−βn〈n|B(P + p,Q + q) |n〉. (44)

This expression admits alternative forms as well. Based on the relation

B̃β[k, x] = e−θ(k2+x2)/4B̃[k, x], (45)

it follows that

Bβ[p, q] =
∫

e−(1/θ)[(p−p′)2+(q−q ′)2] B[p′, q ′]
π θ

dp′ dq ′

2π
. (46)

Still another connection is given by

Bβ[p, q] =
∫

ei(kq−xp) e−θ(k2+x2)/4B̃[k, x]
dk dx

2π

= e(θ/4)(∂2/∂p2+∂2/∂q2)

∫
ei(kq−xp)B̃[k, x]

dk dx

2π

= e(θ/4)(∂2/∂p2+∂2/∂q2)B[p, q]. (47)

Let us turn our attention to the dual representation associated with A−β[p, q]. In this
case, we focus on the operator representation given by

A = (1 − e−β)

∫
A−β[p, q]U [p, q] e−βN U [p, q]†

dp dq

2π

= (1 − e−β)

∞∑
n=0

e−βn

∫
A−β[p, q]|p, q; n〉〈p, q; n|dp dq

2π
, (48)

where we have introduced the notation [9]

|p, q; n〉 ≡ U [p, q] |n〉 (49)

for those coherent states for which the fiducial vector is |n〉. There is an alternative
representation for the symbol under discussion which is given by

A−β[p, q] = e−(θ/4)(∂2/∂p2+∂2/∂q2)A[p, q], (50)

which is particularly useful if the Weyl symbol is a polynomial.
We now turn our attention to a different but closely related example, which we distinguish

by a prime (′). In particular, we choose

σ ′ ≡ Z′(−1)N e−βN = (1 + e−β) e−(β+iπ) N . (51)
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This example also corresponds to a Hermitian choice for σ , but it is not positive definite as
was our previous choice. The results of interest are easily calculated simply by an analytic
extension of the parameter β to β ′ ≡ β + iπ . In particular, it follows that

Tr(U [k, x]σ ′) = e−θ ′(k2+x2)/4, (52)

where

θ ′ = 1 + e−β ′

1 − e−β ′ = 1 − e−β

1 + e−β
. (53)

Thus, in the present case, we have a similar rescaling factor, but this time, the parameter
θ ′ < 1. with again the limit that θ ′ → 1 as β → ∞.

Turning attention to the relevant symbols, we first see that

Bβ ′[p, q] = Z′ Tr(U [p, q] e−β ′N U [p, q]†B)

= (1 + e−β)

∞∑
n=0

(−1)n e−βn〈n|U [p, q]†B(P,Q)U [p, q] |n〉

= (1 + e−β)

∞∑
n=0

(−1)n e−βn〈n|B(P + p,Q + q)|n〉. (54)

This expression also admits alternative forms as well. Based on the relation

B̃β ′[k, x] = e−θ ′(k2+x2)/4B̃[k, x], (55)

it follows that

Bβ ′[p, q] =
∫

e−(1/θ ′)[(p−p′)2+(q−q ′)2] B[p′, q ′]
π θ ′

dp′dq ′

2π
. (56)

Still another connection is given by

Bβ ′[p, q] = e(θ ′/4)(∂2/∂p2+∂2/∂q2)B[p, q]. (57)

Let us again turn our attention to the dual representation associated with A−β ′ [p, q]. In
this case, we focus on the operator representation given by

A = (1 − e−β ′
)

∫
A−β ′ [p, q]U [p, q] e−β ′N U [p, q]†

dp dq

2π

= (1 + e−β)

∞∑
n=0

(−1)n e−βn

∫
A−β ′[p, q]|p, q; n〉 〈p, q; n|dp dq

2π
. (58)

There is another representation for the symbol under discussion given by

A−β ′ [p, q] = e−(θ ′/4)(∂2/∂p2+∂2/∂q2)A[p, q], (59)

which is particularly useful, once again, if the Weyl symbol is a polynomial.
It is of interest to observe, for the thermal choice of σ (or one with a complex temperature

such as σ ′) discussed in this section, that every bounded operator A may be represented for
any choice of β by weights A−β[p, q] that are elements of Z ′(R2), just as was the case for the
Glauber–Sudarshan representation. This holds because if we multiply a distribution in D′(R2)

by an expression of the form exp[θ(k2 + x2)/4], it remains a distribution in D′(R2) because
multiplication with such a factor leaves the test function space D(R2) invariant.

The example discussed above has some similarity with one treated by Cahill and Glauber
[10]. In their work, they interpret the additional factor as arising from a reordering of the
basic Weyl operator, i.e., a smooth transition from normal ordered to anti-normal ordered. On
the other hand, we interpret a similar factor as coming from an alternative definition of the
associated symbol.
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5. Further examples and generalizations

5.1. Additional examples

For a fixed, nonzero point (r, s) in phase space, consider the non-Hermitian example for which

σ = (1 − e−β)U [r, s]† e−β N . (60)

In this case

Tr(U [k, x] σ) = (1 − e−β) Tr(U [k, x]U [r, s]† e−β N)

= (1 − e−β) e−i(ks−xr)/2 Tr(U [k − r, x − s] e−β N)

= e−i(ks−xr)/2 e−θ[(k−r)2+(x−s)2]/4, (61)

where

θ ≡ 1 + e−β

1 − e−β
(62)

as before. With this example, we find that

B̃σ [k, x] = e−i(ks−xr)/2 e−θ[(k−r)2+(x−s)2]/4 Tr(U [k, x]†B), (63)

which has the feature that phase-space points at and near (r, s) are ‘emphasized’ in comparison
with the rest of phase space. For applications in the time-frequency domain, for example, such
an emphasis may of value.

Another class of examples is offered by the following observation. First, let us make a
preliminary choice of σ = |n〉 〈n|, where |n〉 denotes the n particle state introduced earlier.
For such a choice we learn that (see, e.g., [10])

Tr(U [k, x] |n〉 〈n|) = 〈n|U [k, x] |n〉
= Ln

(
1
2 (k2 + x2)

)
e−(k2+x2)/4, (64)

where Ln(y) denotes a Laguerre polynomial defined, as usual, by

Ln(y) ≡ ey

n!

dn

dyn
(yn e−y). (65)

Each Laguerre polynomial Ln(y) is real and has n distinct, real zeros. Thus the choice
σ = |n〉 〈n| violates the basic postulate that Tr(U [k, x] σ) 	= 0 for all (k, x) ∈ R

2 whenever
n > 0. However, we can overcome this problem by choosing instead a non-Hermitian example,
such as

σ = R|n〉 〈n| + i T |m〉 〈m|, (66)

where m 	= n, and R and T are two real, nonzero factors that reflect the relative weight of the
two contributions. As a consequence, we are led to

Tr(U [k, x] σ) = [
RLn

(
1
2 (k2 + x2)

)
+ iT Lm

(
1
2 (k2 + x2)

)]
e−(k2+x2)/4, (67)

which is never zero for any choice of (k, x). Further extensions along these lines are evident.
Associated with each choice of σ above is the corresponding dual representation given,

as usual, by

A ≡
∫

A−σ [p, q]U [p, q] σ †U [p, q]†
dp dq

2π
, (68)

which we do not need to spell out in detail again.
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5.2. Relaxation of nonvanishing criterion

Returning to a general choice of σ , we observe that so long as Tr(U [k, x] σ) never vanishes,
we can assert that if Bσ [p, q] = 0 for all (p, q) ∈ R

2, then the operator B = 0. This property
follows from the fact that when B̃[k, x] = 0, it follows that Tr(B†B) = ∫ |B̃[k, x]|2 dk dx = 0,
which can only happen if B = 0. However, if

Tr(U [ko, xo] σ) = 0 (69)

for some phase-space point (ko, xo), for example, then the very operator B = U [ko, xo] would
lead to the fact that B̃[k, x] = 0, for all (k, x) in phase space, with the consequence that
Bσ [p, q] ≡ 0 despite the fact that B 	= 0.

Turning to the dual symbols, we observe that so long as Tr(U [k, x] σ) never vanishes, we
can formally represent every operator in the form

A =
∫

A−σ [p, q]U [p, q] σ †U [p, q]†
dp dq

2π
, (70)

where the symbol

A−σ [p, q] =
∫

ei(px−qk) Ã[k, x]

Tr(U [k, x]†σ †)

dk dx

2π
(71)

is a distribution appropriate to the situation under consideration. More precisely, we can
represent all bounded operators in such a fashion, and every operator can be obtained as
a suitable limit from the set of bounded operators. On the other hand, if we relax the
condition that Tr(U [k, x] σ) never vanishes, we lose this generality. Suppose again that
Tr(U [ko, xo] σ) = 0 for some particular point in phase space (ko, xo). In that case, it is strictly
speaking not possible to generate the operator U [ko, xo] σ †U [ko, xo]†.

On the other hand, if one is only interested in operators that are polynomial in P and Q,
then the support of the Weyl symbol Ã[k, x] or B̃[k, x] is strictly at the origin in phase space,
e.g., for C̃ equal either Ã or B̃,

C̃[k, x] =
I,J∑

i,j=0

ci,j

di

dki

dj

dxj
δ(k)δ(x), (72)

where I < ∞ and J < ∞. In that case, the fact that Tr(U [k, x] σ) may vanish away from the
origin has no influence on the matter, and thus so long as Tr(σ ) 	= 0, and thus by continuity
Tr(U [k, x] σ) is nonzero in an open neighbourhood of the origin, all polynomials in P and Q
can be represented in the form

A =
∫

A−σ [p, q]U [p, q] σ †U [p, q]†
dp dq

2π
, (73)

and, additionally, the symbol

Bσ [p, q] = Tr(U [p, q] σ U [p, q]†B) (74)

uniquely determines the operator B provided that it is a polynomial. This result generalizes a
result established some time ago [11].

5.3. Arbitrary weight factors

It is of course possible to reweight the Weyl representation by quite arbitrary factors in the
manner

Tr(A†B) =
∫

Ã[k, x]∗B̃[k, x]
dk dx

2π



2104 J R Klauder and B-S K Skagerstam

=
∫

{(F [k, x]∗)−1Ã[k, x]}∗ {F [k, x]B̃[k, x]}dk dx

2π

≡
∫

Ã−F [k, x]∗B̃F [k, x]
dk dx

2π

≡
∫

A−F [p, q]BF [p, q]
dp dq

2π
, (75)

where F [k, x] is an arbitrary nonvanishing factor, and, as usual, we have introduced the
Fourier transform elements in the last line. Apart from additional conditions—specifically,
F(0, x) = 1 = F(k, 0)—this is the procedure used by Cohen [2]. However, a general factor
F [k, x] cannot normally be represented as Tr(U [k, x] σ) for some σ . For example, the function
Tr(U [k, x] σ) is necessarily continuous and bounded by |Tr(U [k, x] σ) | � Tr(

√
σ †σ), the

trace class norm of σ . However, more to the point, the introduction of a general expression
such as F [k, x] would normally introduce elements outside the Hilbert space and its operators
that we have so far consistently stayed within. Such an extension may of course be considered,
but the non-operator nature in the extension being made should be appreciated and accepted.

Of course, the investigation of quasi-distributions continues unabated. As one
comparatively recent example of such investigations, we cite the work of [12].

5.4. Non-canonical generalizations

Representations of Hilbert space operators in the manner of the Weyl representation may be
carried out for a great variety of groups. In addition, since coherent states may be defined for
other groups, analogs of the Husimi and dual Glauber–Sudarshan representations exist in such
cases as well, and these have often been discussed in the literature. Consequently, it follows
that asymmetric representations of various forms, analogous to those presented in this paper
for the Weyl group, can be introduced for other groups, e.g., the groups SU(2) and SU(1, 1),
as well.

6. Conclusions

Quite naturally, an increase in the family of representations of various systems offers new
ways to study such systems. A general formulation of states and observables must lead to a
symmetric, abstract description; but for specific systems, where the states of interest may be
‘better behaved’ than the observables, it may be useful to take advantage of that distinction with
an asymmetric representation pair. Likewise, within the realm of time-frequency analysis,
signals and their analysers may have very different characteristics that also suggest the utility
of an asymmetric pair. Moreover, to minimize any extraneous elements in such asymmetric
representations, it is appropriate that the representations in question be formulated within the
initial abstract formalism, a point of view developed in the present paper.

Although it is difficult to predict in advance just which asymmetric representation pairs
may prove useful, there may well arise special situations for which certain asymmetric
representations prove useful—just as was the case in quantum optics for the Husimi–Glauber–
Sudarshan representation pair.
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